If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+13+40x=0
a = 1; b = 40; c = +13;
Δ = b2-4ac
Δ = 402-4·1·13
Δ = 1548
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1548}=\sqrt{36*43}=\sqrt{36}*\sqrt{43}=6\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-6\sqrt{43}}{2*1}=\frac{-40-6\sqrt{43}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+6\sqrt{43}}{2*1}=\frac{-40+6\sqrt{43}}{2} $
| -2(7+7x)=-140 | | 6x2=x+22 | | 2(-4-2x)=32 | | 9=2n-3 | | -2(6-4x)=-92 | | 6(2+7x)=-408 | | -6x-3=6x-15 | | 2j=15 | | -4x+10=3x-60 | | 21=9j-10=-227 | | -x+2=7x-86 | | -7.2(x-14.6)=-9 | | 2(×-1)=2x+3 | | -1=-6+v÷4 | | -3x+10=-6x-23 | | 7*x=8 | | 9x-(10+4x=15 | | -2=-10+a÷3 | | -7x+5=-6x+13 | | X=47-2y | | 7x-1=-61+2x | | -2b+3=-(2b-3) | | X+(2x-22)=180 | | -5x+2=-19-2x | | 5x-3=185x-3=18 | | 14=7(4+6n)-6(1+7n) | | n²-14n-23=-8 | | V2-8v+7=0 | | 3/4(1x/4+8)-(1x/2+2)=3/8(4-x)-1x/4 | | 6y-18=6y-2 | | c=18(3.14) | | N-8n=-6n |